Understanding How HIV and Hepatitis C Virus (HCV) Infection Affects CYP2B6 Enzymatic Activity and Methadone Pharmacokinetics

Talal

Andrew H. Talal1, Charles S. Venuto2, Yuxin Ding1, Arpan Dharia1, Clewert Sylvester3, Heidi Nieves-McGrath1, Anthony Mcleod6, Gene D. Morse1, Marianthi Markatou1, Lawrence S. Brown5, Evan D. Kharasch4

1University at Buffalo, Buffalo, NY
2University of Rochester, Rochester, NY
3START Treatment & Recovery Centers, Brooklyn, NY
4Duke University School of Medicine, Durham, NC

Background
Methadone is one of three essential medications approved for treatment of opioid use disorder. However, it’s narrow therapeutic index and inter-individual variability in disposition create dosing challenges. While overdose can lead to toxicity and death, sub-therapeutic doses can potentiate withdrawal. We seek to develop safe, effective methadone dosing strategies. We initially sought to elucidate the association between CYP2B6 genetic polymorphisms and methadone disposition in HIV and HCV patients.

Rationale/Significance
CYP2B6 is a polymorphic, methadone metabolic enzyme with 38 variant alleles identified through single-nucleotide polymorphisms. Several loss-of-function alleles (CYP2B6*5, CYP2B6*6, CYP2B6*7, CYP2B6*16, CYP2B6*18) express low activity and CYP2B6.6 and CYP2B6.9 catalyze less methadone N-demethylation to metabolites 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) compared to wild-type (CYP2B6.1*1).

Hypothesis
We hypothesize that HIV and HCV infection affects CYP2B6 enzymatic activity.

Results
Pre-dose (trough) plasma was collected from 98 adults on daily, oral methadone for measurement of (R&S)-methadone and (R&S)-EDDP concentrations. Participants were minority (61% African-American, 28% Caucasian) and non-Hispanic (68%). Exploratory data analysis revealed that mean (R&S)-methadone concentrations appear to be similar between wild-type and loss-of-function alleles. Analysis by infection status (HIV/HCV co-infected, HCV mono-infected, uninfected) revealed that CYP2B6*7 activity was particularly diminished in co-infected participants as indicated by higher (R&S)-methadone concentrations compared to wild-type and lower EDDP/(R&S)-methadone ratios compared to mono-infected participants. Co-infected CYP2B6*6 homozygotes (*6/*6) also revealed numerically greater (R&S)-methadone concentrations compared to CYP2B6*6 carriers (*1/*6) and wild-type (*1/*1).

Discussion
Co-infection particularly affects CYP2B6*7 and *6/*6 enzymatic activity. Results suggest that infection status may affect CYP2B6 enzymatic activity with regard to methadone pharmacokinetics.

Supported by: 4P30-AI078498